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Preface

This volume contains the proceedings of the International Conference on
Computer Aided Verification (CAV), held in Edinburgh, Scotland, July 6-10,
2005. CAV 2005 was the seventeenth in a series of conferences dedicated to
the advancement of the theory and practice of computer-assisted formal anal-
ysis methods for software and hardware systems. The conference covered the
spectrum from theoretical results to concrete applications, with an emphasis on
practical verification tools and the algorithms and techniques that are needed
for their implementation.

We received 123 submissions for regular papers and 32 submissions for tool
papers. Of these submissions, the Program Committee selected 32 regular papers
and 16 tool papers, which formed the technical program of the conference.

The conference had three invited talks, by Bob Bentley (Intel), Bud Mishra
(NYU), and George C. Necula (UC Berkeley). The conference was preceded by
a tutorial day, with two tutorials:

— Automated Abstraction Refinement, by Thomas Ball (Microsoft) and Ken
McMillan (Cadence); and

— Theory and Practice of Decision Procedures for Combinations of (First-
Order) Theories, by Clark Barrett (NYU) and Cesare Tinelli (U Iowa).

CAV 2005 had six affiliated workshops:

— BMC 2005: 3rd Int. Workshop on Bounded Model Checking;

— FATES 2005: 5th Workshop on Formal Approaches to Testing Software;

— GDV 2005: 2nd Workshop on Games in Design and Verification;

PDPAR 2005: 3rd Workshop on Pragmatics of Decision Procedures in Au-
tomated Reasoning;

— RV 2005: 5th Workshop on Runtime Verification; and

— SoftMC 2005: 3rd Workshop on Software Model Checking.

Publications of workshop proceedings were managed by their respective chairs.
In addition to the workshops, a special tools competition called “Satisfiability
Modulo Theories Competition” was held for tools implementing decision proce-
dures for combinations of theories. A preliminary report on this competition is
included in this volume.

The CAV 2005 banquet was dedicated to Prof. Ed Clarke on his 60th birthday.

CAV 2005 was supported by generous sponsorships from IBM, Microsoft,
the J. von Neumann Minerva Center for Verification of Reactive Systems at the
Weizmann Institute, Intel, Jasper Design Automation, Synopsys and Cadence
Design Systems. We are grateful for their support. We would like to thank the
Program Committee members and the subreferees for their hard work in eval-
uating the submissions and the selection of the program. We also thank the
Steering Committee and the chairs of CAV 2004 for their help and advice.



VI Preface

For logistical support we are grateful to the staff at the School of Informatics,
University of Edinburgh, the National eScience Centre in Edinburgh, and to the
support staff of Microsoft Research’s Conference Management Toolkit.

July 2005 Kousha Etessami and Sriram K. Rajamani
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Randomized Algorithms for Program Analysis
and Verification

George C. Necula and Sumit Gulwani

Department of Electrical Engineering and Computer Science,
University of California, Berkeley
{necula, gulwani}@cs.berkeley.edu

Program analysis and verification are provably hard, and we have learned not
to expect perfect results. We are accustomed to pay this cost in terms of in-
completeness and algorithm complexity. Recently we have started to investigate
what benefits we could expect if we are willing to trade off controlled amounts
of soundness. This talk describes a number of randomized program analysis
algorithms which are simpler, and in many cases have lower computational com-
plexity, than the corresponding deterministic algorithms. The price paid is that
such algorithms may, in rare occasions, infer properties that are not true. We
describe both the intuitions and the technical arguments that allow us to eval-
uate and control the probability that an erroneous result is returned, in terms
of various parameters of the algorithm. These arguments will also shed light on
the limitations of such randomized algorithms.

The randomized algorithms for program analysis are structured in a manner
similar to an interpreter. The key insight is that a concrete interpreter is forced
to ignore half of the state space at each branching point in a program. Instead, a
random interpreter executes both branches of a conditional and combines the re-
sulting states at the join point using a linear combination with random weights.
This function has the property that it preserves all linear invariants between
program variables, although it may introduce false linear relationships with low
probability. This insight leads to a quadratic (in program size) algorithm for in-
ferring linear relationships among program variables, which is both simpler and
faster than the cubic deterministic algorithm due to Karr (1976). This strategy
can be extended beyond linear equality invariants, to equality modulo unin-
terpreted functions, a problem called global value numbering. This results in
the first polynomial-time algorithm for global value numbering (randomized or
deterministic).

These ideas have application in automated deduction as well. We describe a
satisfiability procedure for uninterpreted functions and linear arithmetic. Some-
what surprisingly, it is possible to extend the randomized satisfiability procedure
to produce satisfying models for the satisfiable problems, and proofs for the un-
satisfiable problems. This allows us to detect by proof checking all instances
when the randomized algorithm runs unsoundly.

We will also show that it is possible to integrate symbolic and randomized
techniques to produce algorithms for more complex problems. We show that in
this manner we can extend in a natural way randomized algorithms to inter-
procedural analyses.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, p. 1, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



Validating a Modern Microprocessor
Extended Abstract

Bob Bentley

2111 N.E. 25th Avenue, Hillsboro, Oregon 97124, U.S.A.
bob.bentley@intel.com

1 Introduction

The microprocessor presents one of the most challenging design problems known to
modern engineering. The number of transistors in each new process generation con-
tinues to follow the growth curve outlined by Gordon Moore 40 years ago. Microar-
chitecture complexity has increased immeasurably since the introduction of out-of-
order speculative execution designs in the mid-90s; and subsequent enhancements
such as Hyper-Threading (HT) Technology, Extended Memory 64 Technology and
ever-deeper pipelining indicate that there are no signs of a slowdown any time soon.
Power has become a first-order concern thanks to a 20x increase in operating frequen-
cies in the past decade and leakier transistors at smaller geometries, and the various
schemes for managing and reducing power while retaining peak performance have
added their own dimensions of complexity.

2 Microprocessor Design

Microprocessor design teams vary widely in size and organizational structure. Within
Intel, implementing a new microarchitecture for the IA-32 product family typically
requires a peak of more than 500 design engineers across a wide range of disciplines -
logic and circuit design, physical design, validation and verification, design automa-
tion, etc. — and takes upwards of 2 years from the start of RTL coding to initial tape-
out. Many of the same engineers, plus specialists in post-silicon debug, test, product
engineering, etc. are needed to get from first silicon to production, which typically
takes between 9 and 12 months. The product then has to be ramped into high-volume
manufacturing, at a run rate of tens of millions of units per quarter, and sustained until
end of life. The overall cycle is significantly longer than the time (roughly 24
months) between successive semiconductor process generations.

3 Microprocessor Validation

Microprocessor validation starts early in the design cycle — these days, even before the
start of RTL coding. Validation engineers are involved in microarchitecture definition,
helping to prevent architectural bugs and produce a more validatable design. On our
most recent design, we have for the first time deployed formal tools and methods — built
around Lamport’s TLA - during the microarchitecture definition phase.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 2 -4, 2005.
© Springer-Verlag Berlin Heidelberg 2005



Validating a Modern Microprocessor 3

Most validation starts with the first release of RTL code. For a new microprocessor,
code is typically created and released in a number of carefully planned phases, over
the course of approximately one year. We rely heavily on Cluster Test Environments
(CTE>5) to allow us to do microarchitecture validation on logically related subsets of
the design, which provides for a much greater degree of controllability than full chip
and also decouples each cluster from the others. Even after a full chip model is avail-
able, we continue to focus much of our dynamic validation effort and cycles at the
cluster level, since controllability in the later pipeline stages of an out-of-order ma-
chine will always be a significant issue. During the RTL development phase of the
project, we have also started to deploy SAT checking as bug-finding tool.

4 Formal Verification

The Pentium® 4 processor was the first project of its kind at Intel where we deployed
Formal Property Verification (FPV) as a mainstream validation technique during CPU
development. Hitherto, FPV had only been applied retroactively, as was done for the
FP divider of the Pentium® Pro processor. We focused on the areas of the design
where we believed that FV could make a significant contribution — in particular, the
floating-point execution units and the instruction decode logic. Bugs in these areas
had escaped detection on previous designs, so this allowed us to apply FPV to some
real problems with real payback.

A major challenge for the FPV team was to develop the tools and methodology
needed to handle a large number of proofs in a highly dynamic environment. The
RTL model is constantly changing due to feature additions or modifications, bug
fixes, timing-induced changes, etc. By the time we taped out we had over 10,000
proofs in our proof database, each of which had to be maintained and regressed as the
RTL changed over the life of the project.

Though our primary emphasis was on proving correctness rather than bug hunting,
FPV had found close to 200 logic bugs by the time we taped out. This was not a large
number in the overall scheme of things (we found almost 8000 bugs total), but about
20 of them were “high quality” bugs that we do not believe would had been found by
any other of our pre-silicon validation activities. Two of these bugs were classic
floating-point data space problems:

e The FADD instruction had a bug where, for a specific combination of source
operands, the 72-bit FP adder was setting the carryout bit to 1 when there was no
actual carryout

e The FMUL instruction had a bug where, when the rounding mode was set to
“round up”, the sticky bit was not set correctly for certain combinations of source
operand mantissa values, specifically:

srcl1[67:0] := X*¥2(i+15) + 1*2i
src2[67:0] := Y*2(j+15) + 1*2]
where i+j = 54, and {X,Y} are any integers that fit in the 68-bit range

These bugs could easily have gone undetected, not just in the pre-silicon environment
but in post-silicon testing also.
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5 Future Challenges

Validating the next generation of microprocessors is going to be a real challenge.
One area that we are exploring is the development of a more abstract level of mi-
croarchitectural specification to help us in this task - both to slow the rate of growth
for bugs from its historical trend line and to enable us to find bugs earlier in the de-
sign cycle. We are already applying formal methods at a higher level of abstraction
during the microarchitecture definition phase of the project.

We are also looking to increase the contribution of formal verification to the over-
all validation effort. We are developing combined FPV and dynamic verification
plans whose implementation will be coordinated so that we apply the best approach to
the problem at hand. We are counting on the next generation of FPV tools like gSTE
to provide greater capacity, thus reducing the effort needed to decompose problems
into a tractable form. In addition, we are applying SAT solver technology for bug
hunting (falsification), especially in combination with dynamic verification.
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Abstract. In this paper, we suggest a possible confluence of the theory
of hybrid automata and the techniques of algorithmic algebra to cre-
ate a computational basis for systems biology. We describe a method
to compute bounded reachability by combining Taylor polynomials and
cylindric algebraic decomposition algorithms. We discuss the power and
limitations of the framework we propose and we suggest several possible
extensions. We briefly show an application to the study of the Delta-
Notch protein signaling system in biology.

1 Prologue

Presently, there is no clear way to determine if the current body of biological
facts is sufficient to explain phenomenology. In the biological community, it is
not uncommon to assume certain biological problems to have achieved a cog-
nitive finality without rigorous justification. In these particular cases, rigorous
mathematical models with automated tools for reasoning, simulation, and com-
putation can be of enormous help to uncover cognitive flaws, qualitative simpli-
fication or overly generalized assumptions. Some ideal candidates for such study
would include: prion hypothesis, cell cycle machinery (DNA replication and re-
pair, chromosome segregation, cell-cycle period control, spindle pole duplication,
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etc.), muscle contractility, processes involved in cancer (cell cycle regulation, an-
giogenesis, DNA repair, apoptosis, cellular senescence, tissue space modeling
enzymes, etc.), signal transduction pathways, circadian rhythms (especially the
effect of small molecular concentration on its robustness), and many others.

Fortunately, similar issues had been tackled in the past by other disciplines:
verification of VLSI circuits, hybrid supervisory controllers, robotics, etc. Yet,
biology poses new challenges. The most interesting biology combines unimag-
inable diversity with an understanding of molecular events in minute detail. A
single base-pair change can influence the folding of a protein, and alter the femto-
second dynamics of any of a tangle of interacting macromolecules. Of course, a
system of millions of ordinary differential equations (ODEs) and their accurate
simulation via numerical integration will not have much effect on uncovering
the key biological insights. What sort of natural computational abstractions of
biological systems can then be most effective? Can we understand biology by
“simulating the biologist, and not biology”?

1.1  Biological Models

The central dogma of biology is a good starting point for understanding a math-
ematical formalism for biochemical processes involved in gene regulation. This
principle states that biochemical information flow in cells is unidirectional —DNA
molecules code information that gets transcribed into RNA, and RNA then gets
translated into proteins. To model a regulatory system for genes, we must also
include an important subclass of proteins (transcription activators), which also
affects and modulates the transcription processes itself, thus completing the cy-
cle. We can write down kinetic mass-action equations for the time variation of
the concentrations of these species, in the form of a system of ODEs [10, 14, 23].
In particular, the transcription process can be described by equations of the Hill
type, with its Hill coefficient n depending on the cooperativity among the tran-
scription binding sites. If the concentrations of DNA and RNA are denoted by
T, Yum, ete., and those of proteins by xp, yp, etc., then the relevant equations
are of the form:

, 1+ 0yp

Ty = —kixpy + ks————— 1
M 14 M 3 1+y§][) ( )
Tp = —koxp + kax s (2)

where the superscripted dots denote the time-derivatives.

Each equation above is an algebraic differential equation consisting of two al-
gebraic terms, a positive term representing synthesis and a negative term repre-
senting degradation. For both RNA and DNA, the degradation is represented by
a linear function; for RNA, synthesis through transcription is a highly nonlinear
but a rational Hill-type function; and for proteins, synthesis through translation
is a linear function of the RNA concentration. In the equation for transcription,
when n = 1, the equations are called Michaelis-Menten equations; yp denotes
the concentration of proteins involved in the transcription initiation of the DNA,
k1 and ko are the forward rate constants of the degradation of RNA and proteins
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respectively, k3 and k4 are the rate constants for RNA and protein synthesis and
# models the saturation effects in transcription.

If one knew all the species x; involved in any one pathway, the mass-action
equations for the system could be expressed in the following form

.’i‘i:fi($1,$27...,$n), i:1,2,...,n

When the number of species becomes large, the complexity of the system of
differential equations grows rapidly. The integrability of the system of equa-
tions, for example, depends on the algebraic properties of appropriate bracket
operations [19, 18]. But, we can approximately describe the behavior of such a
system using a hybrid automaton [2, 21]. The “flow”, “invariant”, “guard”, and
“reset” conditions can be approximated by algebraic systems and the decision
procedures for determining various properties of these biological systems can be
developed using the methods of symbolic algorithmic algebra.

1.2 Intercellular Communication

Communication between adjacent cells are used by biological systems in coor-
dinating the roles, which can be ultimately assigned to any individual cell. For
instance, in both vertebrates as well as invertebrates, lateral inhibition through
the Delta-Notch signaling pathway leads to cells, starting initially in uniform
distribution, to differentiate into “salt-and-pepper” regular-spaced patterns. In
a communication mechanism employing lateral inhibition, two adjacent cells
interact by having one cell adopt a particular fate, which in turn inhibits its
immediate neighbors from doing likewise. In flies, worms and vertebrates, the
transmembrane proteins Notch and Delta (or homologs) mediate the reaction,
with Notch playing a receptor with its ligand being a Delta protein on a neigh-
boring cell.

Thus, imagine that one has a description of this system in terms of a state-
space, its dynamics (i.e. rules for flows and state transitions), and the subregion
of its state space corresponding to a desired property (e.g., fine-grained pattern-
ing of cells in a neighborhood). The first interesting question would be whether
the model adequately predicts that, when started in a biologically reasonable
initial state with all the model parameters assuming some known values, this
system actually evolves into the subregion encoding the desired properties. If
it does, the second question to ask would be whether one can completely and
succinctly characterize all possible regions (“backward-reachable region”) from
which the system also evolves into the desired subregion. The volume of such
a region, its symmetry and other invariants may tell us quite a lot about those
properties of the underlying biological system, which may have attributed to its
selective advantages. Furthermore, the model is now amenable to verification
by wet-lab experimentation involving the creation and analysis of mutants (in
the genes/proteins of relevance), some of which may “live” inside the reachable
region and others outside. To answer the first question, a good numerical simu-
lation tool suffices. However, it is less clear how best the second problem should
be solved computationally.
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In a simplified continuous time model, the changes to the normalized levels
of Notch np x and Delta dp x activity in a cell X can be expressed as the ODEs

ipx = plf(dpx) —npx] and dp x = plg(np.x) — dp.x], where

_ 1 ak b
dP,X = T v Z dP,X/v f(x) = L’ g(x) = ho
#N(X) XN a+x b+x

with A/(X) being the set of neighboring cells of the cell X and pu, p, a, b > 0,
k, h > 1. Note that f monotonically increases from 0 to 1 and g monotonically
decreases from 1 to 0 as z takes increasing value from 0 to oo (see Collier et al.
[9] for details of the model). Collier et al. concluded that the feedback loop was
adequate for generating spatial patterns from random stochastic fluctuations in
a population of initially equivalent cells, provided that feedback is strong enough.
Though they also observed that the model does not account for the longer-range
patterns.

In a related computational analysis, Ghosh et al. [11] proposed a piecewise
linear approximation to the continuous time model to generate a hybrid au-
tomaton. On this automaton, they conducted a symbolic reachability analysis
using SAL - a heuristic symbolic decision procedure, to characterize the reach-
able region by numerical constraints, further sharpening the observations of [9)].
Our model described below, shows that the reachable set computed by Ghosh
et al. lacks a completeness in description.

2 Technical Preliminaries

2.1  Semi-algebraic Hybrid Automata: Syntax

The notion of hybrid automata was first introduced as a model and specifica-
tion language for systems with both continuous and discrete dynamics, i.e., for
systems consisting of a discrete program within a continuously changing en-
vironment. A useful restriction is through the notion of semi-algebraic hybrid
automata whose defining conditions are built out of polynomials over the reals,
and reflect the algebraic nature of the DAEs (differential algebraic equations) ap-
pearing in kinetic mass-action models of regulatory, metabolic and signal trans-
duction processes.

Definition 1. Semi-algebraic Hybrid Automata. A k-dimensional hy-
brid automaton is a 7-tuple, H = (Z, V, E, Init, Inv, Flow, Jump), consisting
of the following components:

— 7Z =A{Zy, ..., Zx} a finite set of variables ranging over the reals R; Z =
{Zl,...,Zk} denotes the first derivatives with respect to the time t € R
during continuous change; Z' = {Z{,...,Z}.} denotes the set of values at
the end of a discrete change;

— (V,E) is a directed graph; the vertices of V' are called control modes, the
edges of E are called control switches;
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— Fach vertex v € V s labeled by “initial”, “invariant” and “flow” labels:
Init(v), Inv(v), and Flow(v); the labels Init(v) and Inv(v) are constraints
whose free variables are in Z; the label Flow(v) is a constraint whose free
vartables are in Z U Z;

— FEach edge e € E is labeled by “jump” conditions: Jump(e), which is a con-
straint whose free variables are in Z U Z'.

We say that H is semi-algebraic if the constraints in Init, Inv, Flow, and Jump
are unquantified first-order formulae over the reals (i.e., over (R,+,x,=,<)).
We say that H is in explicit form if each Flow(v) is of the form /\f:1 Z; =
fi(Zl,...’Zk). I:l

In this paper we consider only semi-algebraic hybrid automata in explicit form.
Notice that although, as defined, semi-algebraic hybrid automata in explicit form
apply only to the cases where the f;’s of the flow conditions are all polynomi-
als, the definitions can be immediately extended to deal with rational functions
instead without significant changes to the basic approach.

Ezample 1. Consider the following semi-algebraic automaton in explicit form.

Jump: Z =2’ =3

Init: Z =1
Inv: 1< Z <3
Flow: Z = 1

Init: Z =3
Inv: 1< Z2< 3
Flow: Z = —1

~ A
Jump: Z =2' =1

The initial mode of this hybrid automaton is shown on the left, where from
the starting value of Z = 1, Z grows with a constant rate of 1. At time ¢ = 2,
when the automaton reaches a value of Z = 3, it jumps to the other mode on
the right. In this second mode, Z wanes with a constant rate of —1 and upon
reaching the value of Z = 1, it jumps back to the initial mode. O

2.2 Hybrid Automata: Semantics

Let H be a hybrid automaton of dimension k. For any given control mode v € V,
we denote with @(v) the set of functions from R* to R* satisfying the constraints
in Flow(v). In addition, for any given r € R*, we use Init(v)(r) (Inv(v)(r) and
Flow(v)(r)) to denote the Boolean value obtained by pairwise substitution of r
with Z in Init(v) (Inv(v) and Flow(v), respectively). Similarly, for any given r,
s € R¥, we use Jump(e)(r, s) to denote the boolean value obtained by pairwise
substitution of r with Z and s with Z’ in Jump(e). The semantics of hybrid
automata can now be given in terms of execution traces as in the definition
below.

Definition 2. Semantics of Hybrid Automata. Let H = (Z, V, E, Init,
Inv, Flow, Jump) be a hybrid automaton of dimension k.

A location £ of H is a pair (v, ), where v € V is a state and v € RF is
an assignment of values to the variables of Z. A location (v, r) is said to be
admissible if Inv(v)(r) is satisfied.
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The continuous reachability transition relation, —¢, between admissible lo-
cations is defined as follows:

<U7 T> —C <’U, S>

iff 3t >0,fe€d(v) (f(()) =r A ft)=s ANVt € [O,t](]nv(v)(f(t’)))).

The discrete reachability transition relation, —p, between admissible loca-
tions is defined as follows:

(v,r) =p (u,8) iff  (v,u) € E A Jump((v,u))(r,s)
A trace of H is a sequence Ly ly, ..., by, ... of admissible locations such that
Vi>0 l; —cliyr V 4 —p liy1. O

2.3 The Bounded Reachability Problem

Let H be a semi-algebraic k-dimensional hybrid automaton in explicit form,
S C R* be a set of “start states”, characterized by the first order formula S(Z),
and B C R* be a set of “bad states”, characterized by the first order formula
B(Z). We wish to check that there exists no trace of H starting from a location of
the form (v, s) with s € S and reaching a location of the form (u, b) with b € B
within a specified time interval [0, end]. If such traces exist we are interested in
a characterization of the points of S which reach B in the time interval [0, end].

Note that for our applications of interest, it suffices to place an upper-bound
on the time interval.

3 Owur Approach

In this paper, we explore solutions to the bounded-reachability problem through
symbolic computation methods, applied to the descriptions of the traces of the
hybrid automaton. Because the description of the automaton is through semi-
algebraic sets, the evolution of the automaton can be described even in cases
where system parameters and initial conditions are unspecified. Nonetheless,
semialgebraic decision procedures provide a succinct description of algebraic
constraints over the initial values and parameters for which proper behavior
of the system can be expected. In addition, by keeping track of conservation
principles (e.g., of mass and energy) in terms of constraint or invariant mani-
folds on which the system must evolve, we avoid many of the obvious pitfalls of
numerical approaches.

Note also that the “algorithmic algebraic model checking approach” that we
propose here naturally generalizes many of the basic ideas inherent to BDD-
based symbolic model checking or even the more recent SAT-based approaches.

Nonetheless, our method has an inherent incompleteness: we proceed on the
traces using a time step ¢ which implies that our answer is relative to a lim-
ited time interval. Furthermore, when the solutions of the differential equations
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cannot be computed we approximate them using the first few terms of the cor-
responding Taylor polynomials, hence the error we accumulate depends on §.

We start by presenting how our method applies to the case of a system of
differential equations, i.e., a hybrid automaton with only just one mode and no
Init, Inv, and Jump conditions.

3.1 The Basic Case

Consider a system of differential equations of the form Z = f(Z), where Z and
Z are vectors of length k£ and f is a function that operates on them.

Let S, B C R¥ be characterized by the formulae S(Z) and B(Z), respectively.
As before, let [0, end] be a time interval and 0 < § < end be a time step.

We use pj(Z0,9) to denote the Taylor polynomial of degree j relative to the
solution Z(t) centered in Z0 with a step size of 4. For instance, p1(Z0, ) is the
vector expression Z0 + f(Z0) - 0.

Consider the following first-order formula over the reals

F5(20,7) = S(Z0) A 36 <Z =pj(20,8') A 0< 8 < 5).

The points reachable from S in the time interval [0, §] can be approximated with
the set of points satisfying the formula 3Z0(F5(Z0, Z)). Hence, the points in B
and reachable from S in [0, §] can be approximated by the formula

3Z0(F5(20,2)) A B(Z).

Symbolic algebraic techniques can be applied in order to both simplify (e.g.,
eliminate quantifiers) and decide the satisfiability of this formula. If the formula
is satisfiable, then the values of Z for which the formula is true represent the
portion of B that can be reached in time 4’ < §. Similarly, the points in S which
reach any point in B within the time interval [0, ] can be characterized by the
formula 3Z(Fs(Z0,Z) A B(Z)). If these formulee are not satisfiable then we can
proceed with a second step, getting the formula

Fa5(20,2) = S(20) A3Z1,8 (21 = pj(Z0,8) A Z =pj(Z1,8) A 0<§ <6).

The above reasoning can now be applied to Fo5(Z0, Z), i.e., use Fa5(Z0, Z)
instead of Fs(Z0, Z), to check if S reaches B within the time interval [0, 24], etc.
Notice that the new variable Z1 which occurs in Fo5(Z0, Z) can be eliminated
by applying substitutions. If after time end all the formule we generate are
unsatisfiable, then S cannot reach B within the time interval [0, end].

It is important to notice that: (1) The only approximation we have introduced
is due to the use of the Taylor polynomials; (2) We have only used existential
quantified formulae; (3) The degree of the Taylor polynomial together with the
degrees of the f;’s influence the complexity of the first-order formulae we create
and the number of steps needed to get a sufficient precision. As far as the approx-
imation issues are concerned, when the derivative of order j 41 of f is bounded
we can use the Lagrange Remainder Theorem to both under and over approxi-
mate the set of points reachable within the time interval [0, end] and to estimate
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the error. It is easy to see that our method can be generalized to the case in
which the f;’s are rational functions, i.e., ratios of polynomial functions. In fact,
in this case we only have to preprocess the formulae by computing the LCMs of
the denominators and using them to get formule over polynomial functions.

When we terminate, we are left with deciding the satisfiability of a semialge-
braic formula involving n = 2 + k- [end/d] + N(S) + N(B) variables in degree
d = max[j + deg(f),deg(S),deg(B)], where N and deg denote the number of
variables and total degree, respectively used in the semialgebraic description of
S and B. In addition, if we assume that the coefficients of the polynomials can be
stored with at most L bits, then the total time complexity (bit-complexity) [17,
20, 24] of the decision procedure is (Llog Lloglog L)d°™ . We note that even
with low degree polynomials, this exponential complexity in the number of vari-
ables makes it impractical to test for bounded-reachability even when the spec-
ified time interval is relatively short. Here we focus on rather simple examples
where the complexity is rather manageable, and is achieved by approximating
polynomial and rational functions by piecewise linear functions.

Ezxample 2. Next, examine the following toy example. The following system of
differential equations describes the dynamics Z = 222 + Z, with S and B char-
acterized by S = Z > 4and B = Z? < 4. Now, consider the time interval
[0,0.5] and time step 0.5. After time 0.5, using an approximation with Taylor
polynomial of degree 2, we derive the formula

320,¢' (ZO >4NZ =20+ (220> + Z0) - §' + (820° + 6Z0* + Z0) - (¢')?/2
AO <8 <05AZ3 <4>.

This formula is unsatisfiable, thus implying that the dynamical system reaches
no bad states in the specified time interval [0, 0.5]. O

The formule involved in our method can be easily simplified, if we introduce
further approximations. For instance, we may approximate reachability by first
evaluating the maxima and the minima of the j-th Taylor polynomial pj(Z,d")s
over S and [0, 4], and then using them as upper and lower bounds.

Ezample 3. Next, consider the differential equation Z = 2Z, with S and B
characterized by S=2<Z<4and B=3< Z <5.

The Taylor polynomial of degree 1 with 6 = 0.5 is Z 4+ 2Z - ¢, i.e., 2Z. Note
that since the maximum and the minimum in S are 8 and 4, respectively, and
since the interval [4, 8] intersects (3,5), S reaches B in time 0.5. O

3.2 The General Case

We are ready to deal with the general case, where we have a polynomial k-
dimensional hybrid automaton H in explicit form.
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Given a mode v of H, we use the notation pj,(Z,d) to denote the Taylor
polynomial of degree j in the mode v centered in Z. The first-order formula

Flv,S](20, Z) = S(Z0) A 38 (Z = js(Z0,8') A 0< 5 <6

AV (0 < 8" <8 — Inv(v)(pin(Z 0’5”)))>

characterizes the points reached within time § in the mode v, under the approx-
imation implied by the use of the Taylor polynomial. Notice that, if we assume
that the invariant regions are convex and we use the Taylor polynomial of degree
1, we can avoid the universal quantification. As before, the formula

320(F[v,S](20, Z)) A B(Z)

is satisfiable if and only if the set B can be reached from S without leaving
mode v within the time step 4. In this case, the points of S which reach B are
characterized by 3Z(F[v,S|(Z0,Z) A B(Z)). If the preceding formula is not
satisfiable, we have to consider all possible alternative situations: that is, either
we continue to evolve within the mode v or we discretely jump to another mode,
u € V. We define the formula S§"

Svu(7) = 3Z0(Fy(Z20, Z), if u=v;
g — 1320, Z1(F§(Z0, Z1) A Jump((v,u))(Z1,Z)), otherwise.

representing the states reached within time § in the mode u. In this way, in the
worst case we generate |E| satisfiable formulee on which we have to iterate the
method, treating them as we treated S(Z) in the first step. In practice, many of
these formulee would be unsatisfiable, and hence at each iteration, the number of
formulze we have to consider will remain considerably low. We may also use an
optimized traversal over the graph to reduce the number of generated formulee.

Let end be the total amount of time during which we examine the hybrid
system’s evolution in terms of at most m = [end/J] time steps: the number
m € N is such that (m —1)d < end < md. Since at each iteration the jumps can
occur before § instants of time have passed, just iterating the method for m steps
does not ensure that we have indeed covered the entire time interval [0, end]. In
particular, if there are Zeno paths starting from .5, i.e., paths in which the time
does not pass since only the jumps are used, our method will fail to converge
in a finite number of steps. For these reasons, at each step, we must check the
minimum elapsed time before a jump can be taken. Let M(Z) = S"*"(Z) be
one of the formulae obtained after some number of iterations. Suppose now that
we intend to jump from this mode w to the next mode z. We will then need to
check whether the minimum amount of time has passed before the jump can be
taken. Consider the formula:

T(w, z, M)(T) = 320, Z1, Z(M(ZO) A Z1=pju(Z0,T) AN 0T <6

AVT'(0 < T <T — Inv(v)(pjn(Z0,T7))) A Jump((w,z))(ZLZ)).
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The minimum amount of time can now be computed as solution of the formula
Min(w, z, M)(T) = T(w,z, M)(T) A VT’ (T' <T— ﬁT(w,z,M)(T'))

To avoid Zeno paths we could eliminate the paths in which the minimum is 0.
Along each generated path we have to iterate until the sum of the minimum
amounts reaches end. If all the paths accumulate a total amount of time greater
than end and B is never reached we can be sure that B cannot be reached from
S in the time interval [0, end]. If B is reached, i.e., one of the formulee involving
B is satisfiable before m iterations, then we can be sure that B is reachable
from S in the time interval [0,end]. If B is reached after the first m iterations,
then B is reachable from S but we are not sure about the elapsed time, since
we keep together flows of different length. It is possible that some paths do not
accumulate a total time greater than end, e.g., the sequence of the minimum
times converges rapidly to 0. In this case our method could not converge. Notice
that even in this general case, we can extend the method to rational flows.

Notice that if at each step the derivatives of order j+ 1 of the involved flows
are bounded on the set of points satisfying the invariant conditions, we can again
exploit the Lagrange Remainder Theorem to both under and over approximate
the set of reachable points and to estimate errors (see [15]).

In order to provide a time-complexity, assume the special situation where
no path accrues more than M discrete jumps (i.e., our method has converged).
When we terminate, we are left with deciding the satisfiability of a quantified
semialgebraic formula with O(M) alternations and involving n = k - [[end /] +
O(M)] + N(S) + N(B) variables in degree d = max[j + deg(Init, Inv, Jump),
deg(S), deg(B)], where N and deg denote the number of variables and total
degree, respectively as before. Assume that the coefficients of the polynomi-
als can be stored with at most L bits. Then the total time complexity (bit-
complexity) [17, 20, 24] of the decision procedure is (L log Llog log L)aZQO(n)7 ie.,
double-exponential in the number of variables.

3.3 Rectangular Regions

When the formulee Init(v)s, Inv(v)s, Jump(e)s, S, and B identify rectangular
(closed) regions (e.g., product of intervals) we can rely on other approaches from
symbolic computations, while achieving further simplifications along the way.

Given a mode v of H, the region obtained from the intersection of Inv(v)
and S is of the form R(v) = a(v) < Z < b(v). We can symbolically determine
the maximum maz(v) and the minimum min(v) of pj,(Z, ") over R(v) x [0, d].
We can use the following formula to over-approximate the points reached within
the time interval [0, d]:

Ov(Z) = min(v) < Z <max(v) A Inv(v)(Z).

The formule Qv(Z) AB(Z) and Qv(Z1) A Jump({v,u))(Z1,Z), can be used to
check if the set B is reached or if it is possible to jump to another mode. Since
these formulae identify rectangular regions, we can iterate the method.
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4 A Case Study: the Delta-Notch Protein Signaling

Let us now return to the Delta-Notch protein signaling system that we had
introduced earlier. The mathematical model for the Delta-Notch signaling pre-
sented in [9] can be approximated by piecewise linear functions and results in a
rectangular hybrid automaton that can be analyzed symbolically.

For instance, in [11] a rather simple piecewise linear hybrid automaton model
was created, and was extensively studied through the predicate abstraction
method of [22]. The piecewise affine hybrid automaton of [11] is defined by: (1) A
set of global invariant conditions which must be always true; (2) A finite number
of modes; (3) Each mode is characterized by a set of local invariant conditions
and a set of differential equations determining the flow of the variables.

The automaton modeling the evolution of a one-cell system has been de-
scribed using the SAL language [7] in [11]. In this description, all the fluxes have
been reversed in order to determine the set of initial conditions from which a
particular steady-state is reached (by solving a forward reachability problem).
The automata relative to the two and four cell systems have also been similarly
studied. Here we consider the two-cell piecewise affine hybrid automaton and ap-
ply our method to the forward reachability problem. For a complete description
of the automaton we refer the reader to [11].

The system representing the evolution of two cells presented in[11] has the
following set of invariant conditions

0<di,dy <Rp/Ap N 0<n1,ny < Rn/An
A\ _RN/)\NShDSO N OShNSRD/)\D

The variables d; and ds represent the concentration of the Delta protein in the
first and in the second cell, respectively. The variables n; and no represent the
concentration of the Notch protein in the first and in the second cell, respec-
tively. Rp and Ry are constants representing the Delta and Notch production
rates, respectively. A\p and Ay are the Delta and Notch protein decay constants,
respectively. hp is an unknown switching threshold which determines the Delta
protein production. hy, similar to hp, is an unknown switching threshold which
determines the Notch protein production.

A possible equilibrium for the system is given by the point dj = 0, nj =
Ryn/An, d5 = Rp/Ap, ny = 0, which belongs to the mode v characterized by
the following invariant and flow conditions

0<di <hy A —hp<ni <Ry/ANy A hy <do <Rp/Ap N 0<nz2 <—hp,
di =Apdi Any=—Ry +Avni Ady = —Rp + Apda ANy = Ayns.

We apply our method to the analysis of the admissible locations reachable from
v. In particular, in this case we can apply the simplifications described in Section
3.3. Even if we limit our attention to one possible evolution with relatively few
iterations, this suffices to compute a somewhat different result from what is
presented in [11].
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The formula Qu({dy, ni, da, ns)) representing the points reached in the time
interval [0, 4] is

0<di<hy-+Ap-hy-6 A *hD*RN'af/\N'hD'5§n1SRN/AN A
hny —Rp-6+Ap-hy-0<ds <Rp/Ap AN 0<ne<—hp—An-hp-é.

Consider a mode u characterized by the following invariant conditions
hy <di < Rp/ApA—hp <ni < Ry/ANAhy <ds < Rp/ApA0 <ng < —hp.

Since the formula Q(v) A Inv(u) is satisfiable we can jump to the mode u. In
particular, assuming that § is so chosen that Ay + Ap - hy - 6 < Rp/Ap, in the
interval [0, ¢], we can reach the points satisfying

hy <di <hny+Ap-hy-6 AN —hp <ny < Ry/An
N hy <dy <Rp/Ap N 0<ng<—hp.

This formula in conjunction with dy < do is easily seen to be satisfiable. For
instance, one can prove that with Ry = Rp = Ay = Ap = 1.0 and —hp =
hy = 0.5 and starting from v with values (0.5, 0.89, 0.68, 0.42), at time 0.5,
we can reach (0.84, 0.81, 0.47, 0.04). In [11], it was proven that all the points
satisfying dy < ds A ni; > ngo are reachable from the stable equilibrium state
belonging to v. Our observation, which does not contradict this result of [11],
nonetheless proves that our method can be combined with that of [11] to obtain
better approximations of the region reachable from the equilibrium in v.

5 Related Literature, Future Work and Conclusions

To place the results described here in the context of a large existing and contin-
ually growing literature, we mention a few related results.

In [4] symbolic computation over (R, +, <, =) is used to compute precondi-
tions on automata with linear flow conditions. Avoiding multiplication ensures
good performance, but the class of automata on which the result can be applied
is quite restricted, and of limited descriptive power.

In the d/dt tool (see [6]), a method involving several successive time steps is
applied. Since the flow conditions (differential equations) are linear, the exact
solution after a time step dt is used to compute the set of points that can
be reached in that time. In another similar tool CheckMate (see [8]), a more
sophisticated method involving time steps is introduced for the case of regions
defined by polyhedra and solvable flow differential equations.

In a much closer related result of [22], predicate abstraction was introduced to
map a hybrid automaton into a discrete one. The states of the discrete automaton
represent sets of values which are indistinguishable with respect to a fixed set of
predicates over the reals. Symbolic computation is used to determine the edges
of the discrete automaton. In [11], the method was applied on piecewise linear
hybrid automata to study the Delta-Notch signaling process. In a sequel, we will
explain connections and differences between these and our methods.
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Recently in [3], predicate abstraction is combined with symbolic computa-
tions over the reals and with the use of time steps. The symbolic computation is
used to determine the transitions between the abstract states, but the differen-
tial equations are kept linear so that the exact solutions are used in the symbolic
computation. In particular, abstract states are forced to evolve at a given time
step and symbolic computation is used to draw transitions by determining if in-
tersections between (abstract) states are non empty. The main differences with
respect to our methods are as follows: (1) We do not use predicate abstraction;
(2) We can apply our method in the case of non-linear differential equations as
well, through the use of Taylor polynomials.

The approach outlined here provides a general framework, but still lacks the
needed degree of applicability, especially in the context of biological questions.
We enumerate these issues: (1) Can one deal with unbounded time interval? (2)
Can one deal with different and adaptively chosen time steps? This is particularly
important if one is dealing with slow reactions as well as reactions that are
relatively fast. (3) Can one conclude about the limiting situations when the time
step sizes approach zero in the limit? (4) Is there a purely differential algebraic
approach (e.g., Ritt algebra) for studying reachability?

In the other directions, one can ask similar questions about how to extend
these constructs for reachability to cases involving various modal operators (e.g.,
next). Beyond these questions, the other remaining problems are of algorithmic
nature dealing with approximability, complexity, and probabilistic computations.

Our plan is to address these problems in a sequence of papers that will form
sequels to the current paper: “Algorithmic Algebraic Model Checking (AAMC)
series.” An incomplete, and evolving list of topics that will be addressed are
as follows: generalization to the dense time logic TCTL [1, 12]; decidability is-
sues in this context and under various reasonable models of computation [16];
state-space discretization and predicate abstractions; “quasi-static simulation,”
combining flux-balanced analysis with slow dynamics; a topological characteri-
zation of bio-chemical processes, etc.

The present status of this project is as described below: There is a prelimi-
nary implementation of the algorithms in C/C++: part of the software system
Tolque, the algebraic model checker for semi-algebraic hybrid automata. As it
gets integrated with our Lisp-based Systems Biology tool Simpathica[5], it will
allow biochemical networks to be easily represented, stored and analyzed. The
resulting technology is hoped to provide a simple framework for biologists to
think about biology and computer scientists to think about how biologists think
about biology.
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1 Introduction

Decision procedures for checking satisfiability of logical formulas are crucial for many
verification applications (e.g., [2, 6, 3]). Of particular recent interest are solvers for Sat-
isfiability Modulo Theories (SMT). SMT solvers decide logical satisfiability (or dually,
validity) with respect to a background theory in classical first-order logic with equality.
Background theories useful for verification are supported, like equality and uninter-
preted functions (EUF), real or integer arithmetic, and theories of bitvectors and arrays.
Input formulas are often syntactically restricted; for example, to be quantifier-free or to
involve only difference constraints. Some solvers support a combination of theories, or
quantifiers.

The Satisfiability Modulo Theories Competition (SMT-COMP) is intended to spark
further advances in the SMT field, especially for applications in verification. Public
competitions are a well-known means of stimulating advancement in automated rea-
soning. Examples include the CASC Competition for first-order reasoning, the SAT
Competition for propositional reasoning, and the Termination Competition for check-
ing termination of term rewriting systems [4, 1,7]. Significant improvements in tool
capabilities are reported from year to year, which anecdotal evidence suggests the com-
petitions play a strong role in fueling. The primary goals of SMT-COMP at CAV 2005
are:

To spur development of SMT solver implementations.

To collect benchmarks in a common format, namely the SMT-LIB format [5].

To jump start definition of SMT theories, again using the proposed SMT-LIB for-
mat.

To connect implementors of SMT solvers with potential users in the verification
community.

The idea of holding SMT-COMP came out of discussions of the SMT-LIB initiative
at the 2nd International Workshop on Pragmatics of Decision Procedures in Automated
Reasoning (PDPAR) at IICAR 2004. SMT-LIB is an initiative of the SMT community
to build a library of SMT benchmarks in a proposed standard format. SMT-COMP aims
to serve this goal by contributing collected benchmark formulas used for the competi-
tion to the library, and by providing an incentive for implementors of SMT solvers to
support the SMT-LIB format.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 20-23, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Evaluation of SMT solvers entered in SMT-COMP takes place July 6-10, while CAV
2005 is meeting, in the style of CASC [4]. Intermediate results are posted periodically
as SMT-COMP proceeds, and final results are announced on the last day of CAV. The
local organizers have arranged for SMT-COMP to have exclusive access to a group of
GNU Linux machines, which are used to run the competition.

The SMT organizers wish to thank Cesare Tinelli and Silvio Renise for developing
the SMT-LIB format and theory specifications for SMT-COMP. Also to be thanked are
Sriram Rajamani and Kousha Etessami for helping make SMT-COMP possible at CAV
2005. Finally, thanks go to everyone contributing benchmarks or entering solvers to
SMT-COMP, and the entire SMT community for supporting the competition.

2 Rules and Competition Format

This Section presents a summary of the rules and competition format for SMT-COMP.
These draw substantially on ideas from the design and organization of CASC [4]. More
detailed information can be found on the SMT-COMP web site: http://www.csl.
sri.com/users/demoura/smt-comp/

2.1 Entrants

An entrant to SMT-COMP is an SMT solver submitted in either source code or binary
format to the organizers. The organizers reserve the right to submit their own systems,
or other systems of interest, to the competition. For solvers submitted in source code
form, the organizers take reasonable precautions to ensure that the source code is not
viewed by anyone other than the organizers. Submitters of an SMT-COMP entrant are
encouraged to be physically present at SMT-COMP, but are not required to be so to
participate or win. The organizers commit to making reasonable efforts to install each
system, but they reserve the right to reject an entrant if its installation process proves
overly difficult. Finally, an entrant to SMT-COMP must include a short (1-2 pages)
description of the system.

2.2 Execution of Solvers

Each SMT-COMP entrant, when executed, must read a single input formula presented
on its standard input channel. All formulas are given in the concrete syntax of the SMT-
LIB format, version 1.1 [5]. For its given input formula, each SMT-COMP entrant is
expected to report on its standard output channel whether the formula is satisfiable or
unsatisfiable. An entrant may also report “unknown” to indicate that it cannot deter-
mine satisfiability of the formula. Each SMT-COMP solver is executed on an unloaded
competition machine for each given formula, up to a fixed time limit. This limit is yet
to be determined, but expected to be at least 5 minutes.

2.3  Judging and Scoring

Scoring is done using the system of points and penalties in Figure 1. In recognition
of the greater difficulty of achieving completeness than soundness in SMT systems,
smaller penalties are assessed for incompleteness than for unsoundness. The organizers
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take responsibility for determining in advance whether formulas are satisfiable or not.
In the event of a tie in total number of points, the solver with the lower average CPU
time on formulas for which it did not timeout is considered the winner.

Reported Points for correct response|Penalty for incorrect response
unsat +1 -8
sat +1 -4
unknown 0 0
timeout 0 0

Fig. 1. Points and Penalties

2.4 Problem Divisions

Each SMT-COMP problem division consists of well-sorted formulas in SMT-LIB for-
mat version 1.1. Divisions and the corresponding theories are defined in SMT-LIB for-
mat on the SMT-LIB web page (linked from SMT-COMP’s page). The divisions contain
a range of problems from relatively easy to difficult. Benchmark formulas for the divi-
sions have been collected by the organizers from other researchers in the field, mostly
from verification applications. The organizers reserve the right to cancel a division if
there are too few solvers entered or benchmarks collected. For more detailed informa-
tion on the divisions, see the SMT-COMP web page. The prefix “QF." below means
the formulas in the division are quantifier-free, and in some cases there are pairs of
divisions for integers and reals, respectively.

— QF_UF: uninterpreted functions

— QF_IDL (QF_RDL): integer (real) difference logic

— QF_UFIDL: integer difference logic with uninterpreted functions

— QF_LIA (QF_LRA): linear integer (real) arithmetic

— QF_UFLIA (QF_UFLRA): linear integer (real) arithmetic with uninterpreted func-
tions

— QF_A: non-extensional arrays

— QF_AUFLIA: linear integer arithmetic with uninterpreted functions, arrays

— AUFLIA: linear integer arithmetic with uninterpreted functions, arrays, quantifiers

2.5 Proofs and Models

SMT-COMP recognizes entrants which produce suitable evidence for the results they
report. Entrants which can produce proofs for unsatisfiable formulas are recognized as
proof-producing, and entrants which can produce models for satisfiable formulas are
recognized as model-generating. No award other than this recognition is given on the
basis of such capabilities, and such capabilities are strictly optional for SMT-COMP
entrants.
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Abstract. We present a new approach for performing predicate abstrac-
tion based on symbolic decision procedures. A symbolic decision proce-
dure for a theory T' (SDPr) takes sets of predicates G and F and sym-
bolically executes a decision procedure for T on G’ U{—e | e € E}, for all
the subsets G’ of G. The result of SDPr is a shared expression (repre-
sented by a directed acyclic graph) that implicitly represents the answer
to a predicate abstraction query.

We present symbolic decision procedures for the logic of Equality and
Uninterpreted Functions(EUF) and Difference logic (DIF) and show that
these procedures run in pseudo-polynomial (rather than exponential)
time. We then provide a method to construct SDP’s for simple mixed
theories (including EUF + DIF) using an extension of the Nelson-Oppen
combination method. We present preliminary evaluation of our procedure
on predicate abstraction benchmarks from device driver verification in
SLAM.

1 Introduction

Predicate abstraction is a technique for automatically creating finite abstract
models of finite and infinite state systems [10]. The method has been widely
used in abstracting finite-state models of programs in SLAM [2] and numerous
other software verification projects [11,4]. It has also been used for synthesizing
loop invariants [9] and verifying distributed protocols [8,13].

The fundamental operation in predicate abstraction can be summarized as
follows: Given a set of predicates P describing some set of properties of the sys-
tem state, and a formula e, compute the weakest Boolean formula Fp(e) over
the predicates P that implies e'. Most implementations of predicate abstrac-
tion [10, 2] construct Fp(e) by collecting the set of cubes (a conjunction of the
predicates or their negations) over P that imply e. The implication is checked
using a first-order theorem prover. This method may require making a very large
(2!P1'in the worst case) number of calls to a theorem prover and can be expensive.

! The dual of this problem, which is to compute the strongest Boolean formula Gp(e)
that is implied by e, can be expressed as ~Fp(—e).

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 24-38, 2005.
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Several techniques have been suggested to improve the performance of pred-
icate abstraction. Some techniques enumerate the cubes over P in an increasing
order of size [8,9,18]. However, these techniques still require an exponential
number of theorem prover calls in the worst case, and demonstrate worst case
behavior in practice. Other techniques sacrifice precision to gain efficiency, by
only considering cubes of some fixed length [2].

Alternately, predicate abstraction can be formulated as a quantifier elimina-
tion problem. Lahiri et al. [13] and Clarke et al. [5] perform predicate abstraction
by reducing the problem to Boolean quantifier elimination. The former method
first transforms a first-order quantifier elimination problem into Boolean quan-
tifier elimination by encoding first-order formulas into Boolean formulas; the
latter assumes a finite representation of integers. The method in [13] first con-
verts the quantifier-free first-order formula to a Boolean formula such that the
translation preserves the set of satisfying assignments of the Boolean variables
in the original variable. Both these techniques use incremental Boolean Satisfi-
ability (SAT) techniques [5,14] to perform the Boolean quantifier elimination.
Namjoshi and Kurshan [15] also proposed using quantifier elimination for first-
order logic directly to perform predicate abstraction — however many theories
(such as the theory of Equality with Uninterpreted Functions) do not admit
quantifier elimination.

Most of the above approaches use decision procedures or SAT solvers as
“black boxes”, at best in an incremental fashion, to perform predicate abstrac-
tion. We believe that having a customized procedure for predicate abstraction
can help improve the efficiency of predicate abstraction on large problems.

We propose a new way to perform predicate abstraction based on symbolic
decision procedures. A symbolic decision procedure for a theory T (SDPr) takes
sets of predicates G and F and symbolically executes a decision procedure for T’
on G'U{—e | e € E}, for all the subsets G’ of G. The output of SDP(G, E) is a
shared expression (an expression where common subexpressions can be shared)
representing those subsets G’ C G, for which G’ U {—e | e € E} is unsatisfiable.
We show that such a procedure can be used to compute Fp(e) for performing
predicate abstraction.

We present symbolic decision procedures for the logic of Equality and Unin-
terpreted Functions(EUF) and Difference logic (DIF) and show that these proce-
dures run in polynomial and pseudo-polynomial time respectively, and therefore
produce compact shared expressions. We provide a method to construct SDP for
a combination of two simple theories T; U Ty (including EUF + DIF), by using
an extension of the Nelson-Oppen combination method. We use Binary Decision
Diagrams (BDDs) [3] to construct Fp(e) from the shared representations effi-
ciently in practice. The proofs for the theorems and lemmas can be found in a
detailed technical report [12].

We present a preliminary evaluation of our procedure on predicate abstraction
benchmarks from device driver verification in SLAM, and show that our method
outperforms existing methods for doing predicate abstraction.
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2  Setup

Figure 1 defines the syntax of a quantifier-free fragment of first-order logic. An
expression in the logic can either be a term or a formula. A term can either be a
variable or an application of a function symbol to a list of terms. A formula can
be the constants true or false or an atomic formula or Boolean combination
of other formulas. Atomic formulas can be formed by an equality between terms
or by an application of a predicate symbol to a list of terms.

term ::= variable | function-symbol(term, ..., term)
formula ::= true | false | atomic-formula
| formula A formula| formulaV formula| —formula

atomic-formula ::= term = term | predicate-symbol(term, ..., term)

Fig.1. Syntax of a quantifier-free fragment of first-order logic

The function and predicate symbols can either be uninterpreted or can be
defined by a particular theory. For instance, the theory of integer linear arith-
metic defines the function-symbol “+” to be the addition function over integers
and “<” to be the comparison predicate over integers. If an expression involves
function or predicate symbols from multiple theories, then it is said to be an
expression over mixed theories.

A formula F is said to be satisfiable if it is possible to assign values to the
various symbols in the formula from the domains associated with the theories to
make the formula true. A formula is valid if =F' is not satisfiable (or unsatisfi-
able). We say a formula A implies a formula B (A = B) if and only if (—A)V B
is valid.

We define a shared expression to be a Directed Acyclic Graph (DAG) rep-
resentation of an expression where common subexpressions can be shared, by
using names to refer to common subexpressions. For example, the intermedi-
ate variable t refers to the expression e; in the shared expression “let t =
€1 in (62 A t) V (63 A —\t)”.

2.1 Predicate Abstraction

A predicate is an atomic formula or its negation?. If G is a set of predicates,
then we define G = {—g | g € G}, to be the set containing the negations of the
predicates in GG. We use the term “predicate” in a general sense to refer to any
atomic formula or its negation and should not be confused to only mean the set
of predicates that are used in predicate abstraction.

Definition 1. For a set of predicates P, a literal l; over P is either a predicate
pi or —p;, where p; € P. A cube ¢ over P is a conjunction of literals. A clause

2 We always use the term “predicate symbol” (and not “predicate”) to refer to symbols
like “<”.
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cl over P is a disjunction of literals. Finally, a minterm over P is a cube with
|P| literals, and exactly one of p; or —p; is present in the cube.

Given a set of predicates P = {p1,...,p,} and a formula e, the main opera-
tion in predicate abstraction involves constructing the weakest Boolean formula
Fp(e) over P such that Fp(e) = e. The expression Fp(e) can be expressed as
the set of all the minterms over P that imply e:

Fple) = \/{c | ¢ is a minterm over P and c implies e} (1)

Proposition 1. For a set of predicates P and a formula e, (i) Fp(—e)
—Fp(e), (it) Fp(er Nea) & Fpler) A Fp(ea), and (iit) Fp(er) V Fp(ea)
Fp(er Vez) (refer to [12] for proofs).

The operation Fp(e) does not distribute over disjunctions. Consider the ex-
ample where P = {x # 5} and e = z < 5V x > 5. In this case, Fp(e) =
x # 5. However Fp(x < 5) = false and Fp(x > 5) = false and thus
(Fp(x <5)V Fp(x >5)) is not the same as Fp(e).

The above properties suggest that one can adopt a two-tier approach to
compute Fp(e) for any formula e:

=
=

1. Convert e into an equivalent Conjunctive Normal Form (CNF), which com-
prises of a conjunction of clauses, i.e., e = (A, cb).
2. For each clause cl; = (e} V e} ...V el), compute r; = Fp(cl;) and return

Fp(e) = A; i

We focus here on computing Fp(\,, cpei) when e; is a predicate. Unless
specified otherwise, we always use e to denote (\/, 5 €;), a disjunction of pred-
icates in the set F in the sequel. For converting a formula to an equivalent CNF
efficiently, we can use the method proposed by McMillan [14].

3 Symbolic Decision Procedures (SDP)

We now show how to perform predicate abstraction using symbolic decision
procedures. We start by describing a saturation-based decision procedure for a
theory T" and then use it to describe the meaning of a symbolic decision procedure
for the theory T'. Finally, we show how a symbolic decision procedure can yield
a shared expression of Fp(e) for predicate abstraction.

Y=X 1
X=Y Y =27 Xi1=Y Xn=Yn
X=7 f(X177Xn):f(Yi77Y")

Fig. 2. Inference rules for theory of equality and uninterpreted functions
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A set of predicates G (over theory T') is unsatisfiable if the formula (A .4 9)
is unsatisfiable. For a given theory T, the decision procedure for T takes a set of
predicates G in the theory and checks if G is unsatisfiable. A theory is defined
by a set of inference rules. An inference rule R is of the form:

Ay As e A,
A

(R)

which denotes that the predicate A can be derived from predicates A1, ..., A, in
one step. Each theory has least one inference rule for deriving contradiction (L).
We also use g : — ¢g1,. .., g, to denote that the predicate g (or L, where g = L)
can be derived from the predicates ¢y, ..., gr using one of the inference rules in
a single step. Figure 2 describes the inference rules for the theory of Equality
and Uninterpreted Functions.

3.1 Saturation Based Decision Procedures

Consider a simple saturation-based procedure DPp shown in Figure 3, that takes
a set of predicates GG as input and returns SATISFIABLE or UNSATISFIABLE.

The algorithm maintains two sets: (i) W is the set of predicates derived from
G up to (and including) the current iteration of the loop in step (2); (i) W’
is the set of all predicates derived before the current iteration. These sets are
initialized in step (1). During each iteration of step (2), if a new predicate g
can be derived from a set of predicates {g1,...,gx} C W', then g is added to
W. The loop terminates after a bound derivDepth,(G). In step (3), we check if
any subset of facts in W can derive contradiction. If such a subset exists, the
algorithm returns UNSATISFIABLE, otherwise it returns SATISFIABLE.

The parameter d = derivDepth;(G) is a bound (that is determined solely
by the set G for the theory T') such that if the loop in step (2) is repeated
for at least d steps, then DPr(G) returns UNSATISFIABLE if and only if G is
unsatisfiable. If such a bound exists for any set of predicates G in the theory,
then DP7 procedure implements a decision procedure for 7.

Definition 2. A theory T is called a saturation theory, if the procedure DPr
described in Figure 3 implements a decision procedure for T'.

In the rest of the paper, we only consider saturation theories. To show that
a theory T is a saturation theory, it suffices to consider a decision procedure
algorithm for T' (say Ar) and show that DPp implements Ap. This can be
shown by deriving a bound on derivDepth,(G) for any set G in the theory.

3.2  Symbolic Decision Procedure

For a (saturation) theory T, a symbolic decision procedure for T' (SDPr) takes
sets of predicates G and E as inputs, and symbolically simulates DP7 on G’ UE ,
for every subset G’ C G. The output of SDPr(G, E) is a symbolic expression
representing those subsets G’ C G, such that G’ U E is unsatisfiable. Thus with
|G| = n, a single run of SDPr symbolically executes 2™ runs of DPr.
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1. Initialize W «— G. W' « {}.
2. For i =1 to derivDepth,(G):

(a) Let W' «— W.

(b) For every fact g ¢ W', if (g: — g1,...,9%) and g, € W’ for all m € [1,k]:

- W —WuU{g}.
3. If(L:—g1,...,95) and gm € W for all m € [1,k]:
— return UNSATISFIABLE

4. else return SATISFIABLE

Fig.3. DP7(G): A simple saturation-based procedure for theory T’

We introduce a set of Boolean variables B = {b, | g € G}, one for each pred-
icate in G. An assignment o : B¢ — {true,false} over B¢ uniquely represents
a subset G' = {g | o(by) = true} of G.

Figure 4 presents the symbolic decision procedure for a theory T, which sym-
bolically executes the saturation based decision procedure DPp on all possible
subsets of the input component G. Just like the DPp algorithm, this procedure
also has three main components: initialization, saturation and contradiction de-
tection. The algorithm also maintains sets W and W', as the DPp algorithm
does. _

Since SDP(G, E) has to execute DPr(G'U FE) on all G’ C G, the number of
steps to iterate the saturation loop equals the maximum derivDepth,(G'UE) for
any G’ C G. For a set of predicates S, we define the bound mazDerivDepth,(S)
as follows:

mazDerivDepth,(S) = maz{derivDepth,(S") | ' C S}

During the execution, the algorithm constructs a set of shared expressions
with the variables over B¢ as the leaves and temporary variables ¢[-] to name in-
termediate expressions. We use t[(g, )] to denote the expression for the predicate
g after the iteration ¢ of the loop in step (2) of the algorithm. We use t[(g, T)] to
denote the top-most expression for g in the shared expression. Below, we briefly
describe each of the phases of SDPr:

Initialization [Step (1)]. The set W is initialized to G U E and W’ to {}. The
leaves of the shared expression symbolically encode each subset G’ U E, for
every G’ C G. For each g € G, the leaf t[(g,0)] is set to b,. For any e; € E,
since —e; is present in all possible subset G’ U E , we replace the leaf for —e;
with true.

Saturation [Step (2)]. For each predicate g, S(g) is the set of derivations of g
from predicates in W’ during any iteration. For any predicate g, we first add
all the ways to derive g until the previous steps by adding ¢[(g,7 — 1)] to
S(g). Every time g can be derived from some set of facts g1, ..., gr such that
each g; is in W', we add this derivation to S(g) in Equation 2. At the end of
the iteration i, t[(g,4)] and ¢[(g, T)] are updated with the set of derivations
in S(g). The loop is executed mazDerivDepth, (G U E) times.

Contradiction [Steps (3,4)]. We know that if G’ U E is unsatisfiable, then G’
implies e (recall, e stands for \/, . e;). Therefore, each derivation of L
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1. Initialization
(a) W GUE and W' — {}.
(b) For each g € G, t[(g,0)] < by.
(c) For each e; € E,| t[(—e;,0)] — true.
2. For i = 1 to mazDerivDepth, (G U E) do:
(a) W' — W.
(b) Initialize S(g) = {}, for any predicate g.
(c) For every g € W', S(g) < S(g) U {t[(g,7 — 1)]}.
(d) For every g, if (9: — g1,...,9%) and g, € W' for all m € [1, k]:
i. Update the set of derivations of g at this level:

me(l,k]

5(9) HS(Q)U{< A t[(ngl)])} (2)

i W~ WU{g}.
(e) For each g € W: t[(g,9)] — Vyeg(y) @
(f) For each g € W, t[(g, T)] < t[(g,1)]
3. Check for contradiction:
(a) Initialize S(e) = {}.
(b) For every {g1,...,9x} C W, if (L:—g1,...,9%) then

S(e) — S(e) u{ ( A tllgm, TH) } ®3)

me(l,k]

(c) Create the derivations for the goal e as t[e] «— (\/des(e) d)

4. Return the shared expression for t[e].

Fig. 4. Symbolic decision procedure SDPr (G, E) for theory T'. The expression e stands

for veiEE €;.

from predicates in W gives a new derivation of e. The set S(e) collects these
derivations and constructs the final expression t[e], which is returned in step

(4).

The output of the procedure is the shared expression t[e]. The leaves of the
expression are the variables in Bg. The only operations in t[e] are conjunction
and disjunction; t[e] is thus a Boolean expression over Bg. We now define the
evaluation of a (shared) expression with respect to a subset G’ C G.

Definition 3. For any expression tlx] whose leaves are in set Bg, and a set
G' C G, we define eval(tlz], G') as the evaluation of t[x], after replacing each
leaf by of t[z] with true if g € G’ and with false otherwise.

The following theorem explains the correctness of the symbolic decision pro-
cedure.

Theorem 1. If tle] = SDPr(G,E), then for_any set of predicates G C G,
eval(t[e], G') = true if and only if DP7(G' U E) returns UNSATISFIABLE.
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Corollary 1. For a set of predicates P, if t[e] = SDPy(P U P,E), then for
any P’ C (P U P) representing a minterm over P (i.e. p; € P' iff —p; & P'),
eval(tle], P') = eval(Fp(e), P).

Hence t[e] is a shared expression for Fp(e), where e denotes \/, cpe;. An
explicit representation of Fp(e) can be obtained by first computing t[e] =
SDP7(P U P, E) and then enumerating the cubes over P that make t[e] true.

In the following sections, we will instantiate 7" to be the EUF and DIF theories
and show that SDPp exists for such theories. For each theory, we only need to
determine the value of maxDerivDepth,(G) for any set of predicates G.

Remark 1. It may be tempting to terminate the loop in step (2) of SDPr (G, E)
once the set of predicates in W does not change across two iterations. However,
this would lead to an incomplete procedure and the following example demon-
strates this.

Ezxample 1. Consider an example where GG contains a set of predicates that de-
notes an “almost” fully connected graph over vertices 1, ..., z,. G contains an
equality predicate between every pair of variables except the edge between x;
and x,. Let F = {x1 = x,}.

After one iteration of the SDPp algorithm on this example, W will contain an
equality between every pair of variables including z; and z,, since x1 = x,, can
be derived from z1 = x;,x; = x,, for every 1 < ¢ < n. Therefore, if the SDPp
algorithm terminates once the set of predicates in W terminates, the procedure
will terminate after two steps.

Now, consider the subset G’ = {x1 = 29,29 = T3,...,%; = Tj11,...,Tp_1 =
2} of G. For this subset of G, DP7(G' U E) requires Ig(n) > 1 (for n > 2) steps
to derive the fact x; = x,,. Therefore SDP1 (G, E) does not simulate the action
of DP7(G' U E). More formally, we can show that eval(t[e], G') = false, but
G’ U E is unsatisfiable.

3.3 SDP for Equality and Uninterpreted Functions

The terms in this logic can either be variables or application of an uninterpreted
function symbol to a list of terms. A predicate in this theory is t; ~ to, where t;
isaterm and ~ € {=,#}. For aset G of EUF predicates, G= and G« denote the
set of equality and disequality predicates in G, respectively. Figure 2 describes
the inference rules for this theory.

Let terms(¢) denote the set of syntactically distinct terms in an expression
(a term or a formula) ¢. For example, terms(f(h(z))) is {z, h(x), f(h(z))}. For
a set of predicates G, terms(G) denotes the union of the set of terms in any
g€ aG.

A decision procedure for EUF can be obtained by the congruence closure
algorithm [17], described in Figure 5.

For a set of predicates G, let m = |terms(G)|. We can show that if we iterate
the loop in step (2) of DPr(G) (shown in Figure 3) for at least 3m steps, then
DPp can implement the congruence closure algorithm. More precisely, for two
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1. Partition the set of terms in terms(G) into equivalence classes using the G- pred-
icates. At any point in the algorithm, let EC(¢) denote the equivalence class for
any term ¢ € terms(G).

(a) Initially, each term belongs to its own distinct equivalence class.

(b) We define a procedure merge(t1,t2) that takes two terms as inputs. The pro-
cedure first merges the equivalence classes of ¢1 and tz. If there are two terms
s1 = f(ui,...,un) and s2 = f(v1,...,vn) such that EC(u;) = EC(v;), for
every 1 < i < n, then it recursively calls merge(s1, s2).

(c) For each t1 = t2 € G=, call merge(t1,t2).

2. If there exists a predicate t1 # t2 in G, such that EC(t;) = EC(t2), then return
UNSATISFIABLE; else SATISFIABLE.

Fig. 5. Simple description of the congruence closure algorithm

terms ¢ and to in terms(G), the predicate t; = to will be derived within 3m
iterations of the loop in step 2 of DPr(G) if and only if EC(t;) = EC(tg) after
step (1) of the congruence closure algorithm (the proof can be found in [12]).

Proposition 2. For a set of EUF predicates G, if m = |terms(G)|, then the
value of maxDerivDepth,(G) for the theory is bound by 3m.

Complexity of SDPp. The run time and size of expression generated by
SDP7 depend both on mazDerivDepth,(G) for the theory and also on the max-
imum number of predicates in W at any point during the algorithm. The maxi-
mum number of predicates in W can be at most m(m—1)/2, considering equality
between every pair of term. The disequalities are never used except for generat-
ing contradictions. It is also easy to verify that the size of S(g) (used in step (2)
of SDPr) is polynomial in the size of input.Hence the run time of SDPr for EUF
and the size of the shared expression returned by the procedure is polynomial
in the size of the input.

3.4  SDP for Difference Logic

Difference logic is a simple yet useful fragment of linear arithmetic, where predi-
cates are of the form x 1 y+¢, where x, y are variables, i€ {<, <} and c is a real
constant. Any equality = y+ ¢ is represented as a conjunction of z < y+ ¢ and
y < x —c. The variables x and y are interpreted over real numbers. The function
symbol “+” and the predicate symbols {<, <} are the interpreted symbols of
this theory. Figure 6 presents the inference rules for this theory?.

Given a set G of difference logic predicates, we can construct a graph where
the vertices of the graph are the variables in G and there is a directed edge in the
graph from x to y, labeled with (>, ¢) if z <1y + ¢ € G. We will use a predicate
and an edge interchangeably in this section.

Definition 4. A simple cycle x1 <1 x2 + c1, T2 X T3 + Co,..., T, X T + ¢y
(where each x; is distinct) is “illegal” if the sum of the edges is d = X;cpy n)ci

3 Constraints like z <1 ¢ are handled by adding a special variable zo to denote the
constant 0, and rewriting the constraint as x >z + ¢ [19].
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and either (i) all the edges in the cycle are < edges and d < 0, or (ii) at least
one edge is an < edge and d < 0.

It is well known [6] that a set of difference predicates G is unsatisfiable if
and only the graph constructed from the predicates has a simple illegal cycle.
Alternately, if we add an edge (<, ¢) between = and y for every simple path from
x to y of weight ¢ (>< determined by the labels of the edges in the path), then we
only need to check for simple cycles of length two in the resultant graph. This
corresponds to the rules (C) and (D) in Figure 6.

X<Y+C Y<X+D C’+D§OC

X<Z+C ZxY4D L1
XY +(C+D) * X<Y+C Y<X+D C+D<0
X<Z+C ZxY+D L1 )
X <Y+ (C+D) () X<Y Y <X
~—v (E)

Fig. 6. Inference rules for Difference logic

For a set of predicates GG, a predicate corresponding to a simple path in the
graph of G can be derived within lg(m) iterations of step (2) of DPr procedure,
where m is the number of variables in G (the proof is in [12]).

Proposition 3. For a set of DIF predicates G, if m is the number of variables
in G, then mazDerivDepthy(G) for the DIF theory is bound by lg(m).

Complexity of SDPr. Let ¢4, be the absolute value of the largest constant
in the set G. We can ignore any derived predicate in of the form z <y + C' from
the set W where the absolute value of C' is greater than (m — 1) % ¢;q,. This
is because the maximum weight of any simple path between x and y can be at
most (m — 1) * Cpas. Again, let const(g) be the absolute value of the constant in
a predicate g. The maximum weight on any simple path has to be a combination
of these weights. Thus, the absolute value of the constant is bound by:

< mzn{(m — 1) * Cmax Egchon‘St(g)}

The maximum number of derived predicates in W can be 2*m?x (2% C + 1),
where a predicate can be either < or <, with m? possible variable pairs and the
absolute value of the constant is bound by C. This is a pseudo polynomial bound
as it depends on the value of the constants in the input.

However, many program verification queries use a subset of difference logic
where each predicate is of the form x <1y or z < ¢. For this case, the maximum
number of predicates generated can be 2xm* (m — 1+ k), where k is the number
of different constants in the input.
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4 Combining SDP for Saturation Theories

In this section, we provide a method to construct a symbolic decision procedure
for the combination of saturation theories T} and T, given SDP for T and T5.
The combination is based on an extension of the Nelson-Oppen (N-O) frame-
work [16] that constructs a decision procedure for the theory 77 U T using the
decision procedures of T} and T5.

We assume that the theories T} and T5 have disjoint signatures (i.e., they do
not share any function symbol), and each theory T} is convex and stably infinite*.
Let us briefly explain the N-O method for combining decision procedures before
explaining the method for combining SDP.

4.1 Nelson-Oppen Method for Combining Decision Procedures

Given two theories 77 and 75, and the decision procedures DPp, and DPr,,
the N-O framework constructs the decision procedure for 17 U T5, denoted as
DPr,ur,.

To decide an input set G, the first step in the procedure is to purify G into sets
G and G such that G; only contains symbols from theory 7; and G is satisfiable
if and only if G1 U G5 is satisfiable. Consider a predicate g = p(t1,...,t,) in G,
where p is a theory T} symbol. The predicate g is purified to ¢’ by replacing each
subterm ¢; whose top-level symbol does not belong to 77 with a fresh variable
w;. The expression t; is then purified to t;- recursively. We add ¢’ to Gy and
the binding predicate w; = t;- to the set G2. We denote the latter as binding
predicate because it binds the fresh variable w; to a term t;.

Let Vg, be the set of shared variables that appear in G; N G3. A set of
equalities A over variables in Vg, is maintained; A records the set of equalities
implied by the facts from either theory. Initially, A = {}.

Each theory T; then alternately decides if DPr, (G;UA) is unsatisfiable. If any
theory reports UNSATISFIABLE, the algorithm returns UNSATISFIABLE; otherwise,
the theory T; generates the new set of equalities over Vy, that are implied by
G; U A®. These equalities are added to A and are communicated to the other
theory. This process is continued until the set A does not change. In this case,
the method returns SATISFIABLE. Let us denote this algorithm as DPp,yur,.

Theorem 2 ([16]). For convezx, stably infinite and signature-disjoint theories
T and Ty, DP7,y7, is a decision procedure for Ty U Th.

There can be at most | Vy,| irredundant equalities over Vi, therefore the
N-O loop terminates after | V| iterations for any input.

4.2  Combining SDP Using Nelson-Oppen Method

We will briefly describe a method to construct the SDPr,y7, by combining
SDPrp, and SDPr,. As before, the input to the method is the pair (G, E) and

4 We need these restrictions only to exploit the N-O combination result. The definition
of convexity and stably infiniteness can be found in [16].

® We assume that each theory has an inference rule for deriving equality between
variables in the theory, and DPr also returns a set of equality over variables.
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the output is an expression t[e]. The facts in E are also purified into sets F; and
F5 and the new binding predicates are added to either G or Gs.

_ Our goal is to symbolically encode the runs of the N-O procedure for G' U
E, for every G’ C G. For any equality predicate § over V,, we maintain an
expression )5 that records all the different ways to derive § (initialized to false).
We also maintain an expression 1. to record all the derivations of e (initialized
to false).

The N-O loop operates just like the case for constructing DPr,y7,. The
SDPr, for each theory T; now takes (G; U A, E;) as input, where A is the set
of equalities over Vg, derived so far. In addition to computing the (shared)
expression tle] as before, SDPr, also returns the expression t[(d, T)], for each
equality d over V, that can be derived in step (2) of the SDPr algorithm.

The leaves of the expressions t[e] and t[(d, T)] are G; U A (since leaves for
E; are replaced with true). We substitute the leaves for any 6 € A with the
expression 1s, to incorporate the derivations of § until this point. We also update
s — (s VE[(6,T)]) to add the new derivations of 6. Similarly, we update
e — (e V tle]) with the new derivations.

The N-O loop iterates | V| number of times to ensure that it has seen every
derivation of a shared equality over V, from any set G} U G5 U Ez U E;, where
G, C G;.

After the N-O iteration terminates, 1. contains all the derivations of e from
G. However, at this point, there are two kind of predicates in the leaves of 1;
the purified predicates and the binding predicates. If ¢’ was the purified form of
a predicate g € G, we replace the leaf for ¢’ with by. The leaves of the binding
predicates are replaced with true, as the fresh variables in these predicates are
really names for subterms in any predicate, and thus their presence does not
affect the satisfiability of a formula. Let t[e] denote the final expression for .
that is returned by SDPr, 7,. Observe that the leaves of ¢[e] are variables in
Bg.

Theorem 3. For two convex, stably-infinite and signature-disjoint theories Ty
and Ty, if tle] = SDPp,u1,(G, E), then for any set of predicates G' C G,
eval(t[e], G’) = true if and only if DPy,,1,(G' U E) returns UNSATISFIABLE.

Since the theory of EUF and DIF satisfy all the restrictions of the theories of
this section, we can construct an SDP for the combined theory that still runs in
pseudo-polynomial time.

5 Implementation and Results

We have implemented a prototype of the symbolic decision procedure for the
combination of EUF and DIF theories. To construct Fp(e), we first build a
BDD (using the CUDD [7] BDD package) for the expression tle] (returned by
SDP7(P U P,E)) and then enumerate the cubes from the BDD.

Creating the BDD for the shared expression t[e] and enumerating the cubes
from the BDD can have exponential complexity in the worst case. This is because
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n |P| | SDPr | UCLID
time (s) | time (s)

3 14 0.20 19.37

4 19 0.43 656

5 24 0.65 -

10 | 49 5.81 -

12 | 59 12.28 -

Fig. 7. Result on diamond examples with increasing number of diamonds. The ex-
pression e is (al = dn). A “” denotes a timeout of 1000 seconds

the expression for Fp(e) can involve an exponential number of cubes (e.g. the
example in Fig 7). However, most problems in practice have a few cubes in Fp(e).
Secondly, as the number of leaves of t[e] (alternately, number of BDD variables)
is bound by |P|, the size of the overall BDD is usually small, and is computed
efficiently in practice. Finally, by generating only the prime implicants® of Fp(e)
from the BDD, we obtain a compact representation of Fp(e).

We report preliminary results evaluating our symbolic decision procedure
based predicate abstraction method on a set of software verification benchmarks.
The benchmarks are generated from the predicate abstraction step for construct-
ing Boolean Programs from C programs of Microsoft Windows device drivers in
SLAM [2].

We compare our method with two other methods for performing predicate
abstraction: (i) DP-based: This method uses the decision procedure ZAPATO [1]
to enumerate the set of cubes that imply e. Various optimizations (e.g. consid-
ering cubes in increasing order of size) are used to prevent enumerating expo-
nential number of cubes in practice. (ii) UCLID-based: This method performs
quantifier-elimination using incremental SAT-based methods [13].

To compare with the DP-based method, we generated 665 predicate abstrac-
tion queries from the verification of device-driver programs. Most of these queries
had between 5 and 14 predicates in them and are fairly representative of queries
in SLAM. The run time of DP-based method was 27904 seconds on a 3 GHz. ma-
chine with 1GB memory. The run time of SDP-based method was 273 seconds.
This gives a little more than 100X speedup on these examples, demonstrating
that our approach can scale much better than decision procedure based methods.
We have not been able to run UCLID-based method on SLAM benchmarks at
the point of submitting this paper.

To compare with UCLID-based approach, we generated different instances of
a problem (see Figure 7 for the example) where P is a set of equality predicates
representing n diamonds connected in a chain and e is an equality al = dn. We
generated different problem instances by varying the size of n. For an instance

S For any Boolean formula ¢ over variables in V, prime implicants of ¢ is a set of
cubes C' = {c1,...,cm} over V such that ¢ < \/ .. c and two or more cubes from
C' can’t be combined to form a larger cube.
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with n diamonds, there are 5n — 1 predicates in P and 2™ cubes in Fp(e) to
denote all the paths from al to dn. Figure 7 shows the result comparing both the
methods. We should note that UCLID method was run on a slightly slower 2GHz
machine. The results illustrate that our method scales much better than the SAT-
based enumeration used in UCLID for this example. Intuitively, UCLID-based
approach grows exponentially with the number of predicates (2/*'1), whereas our
approach only grows exponentially with the number of diamonds (2") in the
result.
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Abstract. In predicate abstraction, exact image computation is prob-
lematic, requiring in the worst case an exponential number of calls to
a decision procedure. For this reason, software model checkers typically
use a weak approximation of the image. This can result in a failure to
prove a property, even given an adequate set of predicates. We present an
interpolant-based method for strengthening the abstract transition rela-
tion in case of such failures. This approach guarantees convergence given
an adequate set of predicates, without requiring an exact image com-
putation. We show empirically that the method converges more rapidly
than an earlier method based on counterexample analysis.

1 Introduction

Predicate abstraction [15] is a technique commonly used in software model check-
ing in which an infinite-state system is represented abstractly by a finite-state
system whose states are the truth valuations of a chosen set of predicates. The
reachable state set of the abstract system corresponds to the strongest inductive
invariant of the infinite-state system expressible as a Boolean combination of the
given predicates.

The primary computational difficulty of predicate abstraction is the abstract
image computation. That is, given a set of predicate states (perhaps represented
symbolically) we wish to compute the set of predicate states reachable from
this set in one step of the abstract system. This can be done by enumerating
the predicate states, using a suitable decision procedure to determine whether
each state is reachable in one step. However, since the number of decision proce-
dure calls is exponential in the number of predicates, this approach is practical
only for small predicates sets. For this reason, software model checkers, such
as SLAM [2] and BLAST [16] typically use weak approximations of the abstract
image. For example, the Cartesian image approximation is the strongest cube
over the predicates that is implied at the next time. This approximation loses
all information about predicates that are neither deterministically true nor de-
terministically false at the next time. Perhaps surprisingly, some properties of
large programs, such as operating system device drivers, can be verified with
this weak approximation [2,7]. Unfortunately, as we will observe, this approach
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fails to verify properties of even very simple programs, if the properties relate to
data stored in arrays.

This paper introduces an approach to approximating the transition relation of
a system using Craig interpolants derived from proofs of bounded model checking
instances. These interpolants are formulas that capture the information about
the transition relation of the system that was deduced in proving the property
in a bounded sense. Thus, the transition relation approximation we obtain is tai-
lored to the property we are trying to prove. Moreover, it is a formula over only
state-holding variables. Hence, for abstract models produced by predicate ab-
straction, the approximate transition relation is a purely propositional formula,
even though the original transition relation is characterized by a first-order for-
mula. Thus, we can apply well-developed Boolean image computation methods
to the approximate system, eliminating the need for a decision procedure in the
image computation. By iteratively refining the approximate transition relation
we can guarantee convergence, in the sense that whenever the chosen predi-
cates are adequate to prove the property, the approximate transition relation is
eventually strong enough to prove the property.*

Related work. The most closely related method is that of Das and Dill [6].
This method analyzes abstract counterexamples (sequences of predicate states),
refining the transition relation approximation in such a way as to rule out in-
feasible transitions. This method is effective, but has the disadvantage that it
uses a specific counterexample and does not consider the property being veri-
fied. Thus it can easily generate refinements not relevant to the property. The
interpolation-based method does not use abstract counterexamples. Rather, it
generates facts relevant to proving the given property in a bounded sense. Thus,
it tends to generate more relevant refinements, and as a result converges more
rapidly.

In [7], interpolants are used to choose new predicates to refine a predicate
abstraction. Here, we use interpolants to refine an approximation of the abstract
transition relation for a given set of predicates.

The chief alternative to iterative approximation is to produce an exact propo-
sitional characterization of the abstract transition relation. For example the
method of [9] uses small-domain techniques to translate a first-order transition
formula into a propositional one that is equisatisfiable over the state-holding
predicates. However, this translation introduces a large number of auxiliary

! The reader should bear in mind that there are two kinds of abstraction occurring
here. The first is predicate abstraction, which produces an abstract transition system
whose state-holding variables are propositional. The second is transition relation
approximation, which weakens the abstract transition formula, yielding a purely
propositional approximate transition formula. To avoid confusion, we will always
refer to the former as abstraction, and the latter as approximation. The techniques
presented here produce an exact reachability result for the abstract model. However,
we may still fail to prove unreachability if an inadequate set of predicates is chosen
for the abstraction.
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Boolean variables, making it impractical to use BDD-based methods for im-
age computation. Though SAT-base Boolean quantifier elimination methods can
be used, the effect is still essentially to enumerate the states in the image. By
contrast, the interpolation-based method produces an approximate transition re-
lation with no auxiliary Boolean variables, allowing efficient use of BDD-based
methods.

Outline. In the next section, we introduce some notations and definitions re-
lated to modeling infinite-state systems symbolically, and briefly describe the
method of deriving interpolants from proofs. Then in section 3, we introduce
the basic method of transition relation approximation using interpolants. In the
following section, we discuss a number of optimizations of this basic method that
are particular to software verification. Section 6 then presents an experimental
comparison of the interpolation method with the Das and Dill method.

2 Preliminaries

Let S be a first-order signature, consisting of individual variables and unin-
terpreted m-ary functional and propositional constants. A state formula is a
first-order formula over S, (which may include various interpreted symbols, such
as = and +). We can think of a state formula ¢ as representing a set of states,
namely, the set of first-order models of ¢. We will express the proposition that
an interpretation o over S models ¢ by ¢[o].

We also assume a first-order signature S’, disjoint from S, and containing for
every symbol s € S, a unique symbol s’ of the same type. For any formula or term
¢ over S, we will use ¢’ to represent the result of replacing every occurrence of a
symbol s in ¢ with s’. Similarly, for any interpretation o over S, we will denote
by ¢’ the interpretation over S’ such that ¢’'s’ = os. A transition formula is a
first-order formula over SUS’. We think of a transition formula T" as representing
a set of state pairs, namely the set of pairs (o1, 02), such that o1 Uob models T
Will will express the proposition that o1 U ¢% models T by T'[o1, 09].

The strongest postcondition of a state formula ¢ with respect to transition for-
mula T, denoted sp;(¢), is the strongest proposition ¢ such that AT implies )’
We will also refer to this as the image of ¢ with respect to T. Similarly, the
weakest precondition of a state formula ¢ with respect to transition formula T,
denoted wpp(¢) is the weakest proposition 9 such that ¢» AT implies ¢'.

A transition system is a pair (I,T), where I is a state formula and T is a
transition formula. Given a state formula i, we will say that v is k-reachable
in (I,T) when there exists a sequence of states oy, ..., o, such that I[og] and
for all 0 < i < k, T[o;,0411], and ¢[o]. Further, ¢ is reachable in (I,T) if it is
k-reachable for some k. We will say that ¢ is an invariant of (I,T) when —¢ is
not reachable in (I, T). A state formula ¢ is an inductive invariant of (I, T) when
I implies ¢ and spp(¢) implies ¢ (note that an inductive invariant is trivially an
invariant).
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Bounded Model Checking. The fact that ¢ is k-reachable in (I,T) can be
expressed symbolically. For any symbol s, and natural number 7, we will use the
notation s to represent the symbol s with i primes added. Thus, s is s".
A symbol with i primes will be used to represent the value of that symbol at
time . We also extend this notation to formulas. Thus, the formula ¢ is the
result of adding ¢ primes to every uninterpreted symbol in ¢.

Now, assuming 7 is total, the state formula 1) is k-reachable in (I,T) exactly
when this formula is consistent:

TOATO Ao E=1) A gy )

We will refer to this as a bounded model checking formula [3], since by test-
ing satisfiability of such formulas, we can determine the reachability of a given
condition within a bounded number of steps.

Interpolants From Proofs. Given a pair of formulas (4, B), such that A A
B is inconsistent, an interpolant for (A, B) is a formula A with the following
properties:

— A implies A,
— A A B is unsatisfiable, and
— A refers only to the common symbols of A and B.

Here, “symbols” excludes symbols such as A and = that are part of the logic
itself. Craig showed that for first-order formulas, an interpolant always exists
for inconsistent formulas [5]. Of more practical interest is that, for certain proof
systems, an interpolant can be derived from a refutation of A A B in linear time.
For example, a purely propositional refutation of A A B using the resolution rule
can be translated to an interpolant in the form of a Boolean circuit having the
same structure as the proof [8,13].

In [11] it is shown that linear-size interpolants can be derived from refutations
in a first-order theory with uninterpreted function symbols and linear arithmetic.
This translation has the property that whenever A and B are quantifier-free, the
derived interpolant Ais also quantifier-free.? We will exploit this property in the
sequel.

Heuristically, the chief advantage of interpolants derived from refutations is
that they capture the facts that the prover derived about A in showing that A
is inconsistent with B. Thus, if the prover tends to ignore irrelevant facts and
focus on relevant ones, we can think of interpolation as a way of filtering out
irrelevant information from A.

For the purposes of this paper, we must extend the notion of interpolant
slightly. That is, given an indexed set of formulas A = {a1,...,a,} such that
/\ A is inconsistent, a symmetric interpolant for A is an indexed set of formulas

2 Note that the Craig theorem does not guarantee the existence of quantifier-free
interpolants. In general this depends on the choice of interpreted symbols in the
logic.
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A= {a1,...,a,} such that each a; implies a;, and A A is inconsistent, and each
a; is over the symbols common to a; and A\ a;. We can construct a symmetric
interpolant for A from a refutation of A A by simply letting a; be the interpolant
derived from the given refutation for the pair (a;, A A\ a;). As long as all the
individual interpolants are derived from the same proof, we are guaranteed that
their conjunction is inconsistent. In the sequel, if Ais a symmetric interpolant
for A, and the elements of A are not explicitly indexed, we will use the notation

A(a;) to refer to a;.

3 Transition Relation Approximation

Because of the expense of image computation in symbolic model checking, it is
often beneficial to abstract the transition relation before model checking, remov-
ing information that is not relevant to the property to be proved. Some examples
of techniques for this purpose are [4,12].

In this paper, we introduce a method of approximating the transition relation
using bounded model checking and symmetric interpolation. Given a transition
system (I,T) and a state formula ¢ that we wish to prove unreachable, we will
use interpolation to refine an approximation T of the transition relation T, such
that 7 implies 7". The initial approximation is just 7' = TRUE.

We begin the refinement loop by attempting to verify the unreachabilty of ¥
in the approximate system (I, T ), using an appropriate model checking algo-
rithm. If ¢ is found to be unreachable in (I, T), we know it is unreachable in
the stronger system (I,T'). Suppose, on the other hand that 1 is found to be
k-reachable in (I, 7). It may be that in fact ¢ is k-reachable in (I,T), or it may
be that 7" is simply too weak an approximation to refute this. To find out, we
will use bounded model checking.

That is, we construct the following set of formulas:

A= {I<O>,T<O>, o ,T<k*1>7¢<k>}

T — TRUE
repeat
if ¢ unreachable in (I,T), return “unreachable”
else, if ¥ reachable in k steps in (1,7T)
A — {[(0>’ T(0>7 o 7T<k71>,¢(k>}
if A\ A satisfiable, return “reachable in k steps”
else
A —ITP(A)
P AP AT O )) D
T —=TNNZ (AT™))
end repeat

Fig. 1. Interpolation-based transition approximation loop. Here, ITP is a function that
computes a symmetric interpolant for a set of formulas
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Note that A A is exactly the bounded model checking formula that characterizes
k-reachability of ¢ in (I,T). We use a decision procedure to determine satisfi-
ability of A A. If it is satisfiable, ¢ is reachable and we are done. If not, we
obtain from the decision procedure a refutation of A A. From this, we extract a
symmetric interpolant A. Notice that for each i in 0...k — 1, A(T@) is a for-
mula implied by 7 the transition formula shifted to time i. Let us shift these
formulas back to time 0, thus converting them to transition formulas. That is,
fori=0...k—1, let:

T, = (AT
where we use ¢{~% to denote removal of 7 primes from ¢, when feasible. We will

call these formulas the transition interpolants. From the properties of symmetric
interpolants, we know the bounded model checking formula

To AT A BT Ay,

is unsatisfiable. Thus we know that the conjunction of the transition inter-
polants A\, T admlts no path of k steps from I to 1. We now compute a refined
approximation T=TA A T This becomes our approximation T in the next
iteration of the loop. This procedure is summarized in Figure 1. Notice that at
each iteration, the refined approximation 7" is strictly stronger than T since T
allows a counterexample of k steps, but T does not. Thus, for finite-state sys-
tems, the loop must terminate. This is simply because we cannot strengthen a
formula with a finite number of models infinitely.

The approximate transition formula 7" has two principle advantages over T.
First, it contains only facts about the transition relation that were derived by
the prover in resolving the bounded model checking problem. Thus it is in some
sense an abstraction of T' relative to . Second, T contains only state-holding
symbols. We will say that a symbol s € S is state-holding in (I, T) when s occurs
in I, or s’ occurs in T In the bounded model checking formula, the only symbols
in common between 7% and the remainder of the formula are of the form s
or s{t1) where s is state-holding. Thus, the transition interpolants T; contain
only state-holding symbols and their primed versions.

The elimination of the non-state-holding symbols by interpolation has two
potential benefits. First, in hardware verification there are usually many non-
state-holding symbols representing inputs of the system. These symbols con-
tribute substantially to the cost of the image computation in symbolic model
checking. Second, for this paper, the chief benefit is in the case when the state-
holding symbols are all propositional (i.e., they are propositional constants). In
this case, even if the transition relation T is a first-order formula, the approxi-
mation 7' is a propositional formula. The individual variables and function sym-
bols are eliminated by interpolation. Thus we can apply well-developed Boolean
methods for symbolic model checking to the approximate system. In the next
section, we will apply this approach to predicate abstraction.
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4 Application to Predicate Abstraction

Predicate abstraction [15] is a technique commonly used in software model check-
ing in which the state of an infinite-state system is represented abstractly by the
truth values of a chosen set of predicates P. The method computes the strongest
inductive invariant of the system expressible as a Boolean combination of these
predicates.

Let us fix a concrete transition system (I,7) and a finite set of state for-
mulas P that we will refer to simply as “the predicates”. We assume a finite
set V' C S of uninterpreted propositional symbols not occurring in I or 7. The
set V consists of a symbol v, for every predicate p € P. We will construct an
abstract transition system (I,7T) whose states are the minterms over V. To re-
late the abstract and concrete systems, we define a concretization function ~.
Given a formula over V, 7 replaces every occurrence of a symbol v, with the
corresponding predicate p. Thus, if ¢ is a Boolean combination over V', v(¢) is
the same combination of the corresponding predicates in P.

For the sake of simplicity, we assume that the initial condition I is a Boolean
combination of the predicates. Thus we choose I so that y(I) = I. We define
the abstract transition relation 7" such that, for any two minterms s, € 2V, we
have T|[s,t] exactly when ~(s) A T A ~(t)’ is consistent. In other words, there
is a transition from abstract state s to abstract state ¢ exactly when there is a
transition from a concrete state satisfying v(s) to a concrete state satisfying ().

We can easily show by induction on the number of steps that if a formula 1)
over V is unreachable in (I,T) then ~(v)) is unreachable in (I,T) (though the
converse does not hold). To allow us to check whether a given ¢ is in fact
reachable in the abstract system, we can express the abstract transition relation
symbolically [9]. The abstract transition relation can be expressed as

T= ((Aer(s = D)) ATA (Apep® = 1)) L (VUV)

where @ | W denotes the “hiding” of non-W symbols in ) by renaming them
to fresh symbols in S. Hiding the concrete symbols in this way takes the place
of existential quantification. Notice that, under this definition, the state-holding
symbols of (I,T) are exactly V. Moreover, for any two minterms s,t € 2V, the
formula s AT At is consistent exactly when (s) AT A~(t)' is consistent. Thus,
T characterizes exactly the transitions of our abstract system.

To determine whether % is reachable in this system using the standard “sym-
bolic” approach, we would compute the reachable states R of the system as the
limit of the following recurrence:

Ro=1
Rit1 = R; Vspz(R;)
The difficulty here is to compute the image sp;. We cannot apply standard

propositional methods for image computation, since the transition formula T is
not propositional. We can compute sp4(¢) as the disjunction of all the minterms
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s € 2V such that 9 AT A s’ is consistent. However, this is quite expensive in prac-
tice, since it requires an exponential number of calls to a theorem prover. In [9],
this is avoided by translating T into a propositional formula that is equisatisfi-
able with T over V U V. This makes it possible to use well developed Boolean
image computation methods to compute the abstract strongest postcondition.
Nonetheless, because the translation introduces a large number of free propo-
sitional variables, the standard approaches to image computation using Binary
Decision Diagrams (BDD’s) were found to be inefficient. Alternative methods
based on enumerating the satisfiable assignments using a SAT solver were found
to be more effective, at least for small numbers of predicates. However, this
method is still essentially enumerative. Its primary advantage is that informa-
tion learned by the solver during the generation of one satisfying assignment can
be reused in the next iteration.

Here, rather than attempting to compute images exactly in the abstract
system, we will simply observe that state-holding symbols of the abstraction
(I, T) are all propositional. Thus, the interpolation-based transition relation ap-
proximation method of the previous section reduces the transition relation to
a purely propositional formula. Moreover, it does this without introducing ex-
traneous Boolean variables. Thus, we can apply standard BDD-based model
checking methods to the approximated system ([, T) without concern that non-
state-holding Boolean variables will cause a combinatorial explosion. Finally,
termination of the approximation loop is guaranteed because the abstract state
space is finite.

5 Software Model Checking

In model checking sequential deterministic programs, we can make some signif-
icant optimizations in the above method.

Path-Based Approximation. The first optimization is to treat the program
counter explicitly, rather than modeling it as a symbolic variable. The main
advantage of this is that it will allow us to apply bounded model checking only
to particular program paths (i.e., sequences of program locations) rather than
to the program as a whole.

We will say that a program II is a pair (L, R), where L is a finite set of
locations, and R is a finite set of operations. An operation is a triple (I,T,1)
where T is a transition formula, [ € L is the entry location of the statement, and
;" € L is the exit location of the statement.

A path of program II from location [y € L to location I € L is a sequence
RS Rkil, of the form (lo,To, ll)(ll,Tl, ZQ) s (lk—lka—la lk) We say that the
path is feasible when there exists a sequence of states og--- oy such that, for
all 0 < ¢ < k, we have T;[0;,0;41]. The reachability problem is to determine
whether program IT has a feasible path from a given initial location [y to a given
final location .
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As in the previous section, we assume a fixed set of predicates P, and a
corresponding set of uninterpreted propositional symbols V. Using these, we
construct an abstract program IT = (L, R). For any operation r = (I,T,1'), let
the abstract operation 7 be (I,T,1'), where, as before

7= ((Aer(r = D) ATA (Aert = ) LV UV

The abstract operation set R is then {F | 7 € R}. We can easily show that if
a path rqg---r,_1 is feasible, then the corresponding abstract path 7o ---7x_1 is
also feasible. Thus if a given location I; is unreachable from Iy in the abstract
program, it is unreachable from [y in the concrete program.

Now we can apply the interpolation-based approximation approach to pro-
grams. We will build an approximate program II = (L, I:{), where R consists of
an operation 7 = (I, T, I') for every ¥ = (I, T,1I') in R, such that T implies T, and
T is over V U V. Initially, every 7" is just TRUE.

At every step of the iteration, we use standard model checking methods to
determine whether the approximation IT has a feasible path from [y to ;. We can
do this because the transition formulas 7" are all propositional. If there is no such
path, then [ is not reachable in the concrete program and we are done. Suppose
on the other hand that there is such a path # = 719 - - - 71 _1. Let @ = g - - Tp_1
be the corresponding path of II. We can construct a bounded model checking
formula to determine the feasibility of this path. Using the notation T'(r) to
denote the T' component of an operation r, let

A={T(=)% |ie0...k—1}

The conjunction A A is consistent exactly when the abstract path 7 is feasible.
Thus, if /A A is consistent, the abstraction does not prove unreachability of Iy
and we are done. If it is inconsistent, we construct a symmetric interpolant A
for A. We extract transition interpolants as follows:

T, = (A(T(m;) "))~

Each of these is implied by the T'(7;), the transition formula of the corresponding
abstract operation. We now strengthen our approximate program II using these
transition interpolants. That is, for each abstract operation ¥ € R, the refined
approximation is 7 = (I, T(r),1") where

T(?‘“)iT(f)/\(/\{Ti |7 =7, ieO...k—l})

In other words, we constrain each approximate operation 7 by the set of tran-
sition interpolants for the occurrences of 7 in the abstract path 7. The refined
approximate program is thus (L, R), where R = {7 | 7 € R}. From the inter-
polant properties, we can easily show that the refined approximate program does
not admit a feasible path corresponding to 7.

We continue in this manner until either the model checker determines that
the approximate program IT has no feasible path from Iy to £, or until bounded
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statement ‘transition interpolant

afa] —y @=2) = ([ = y)

Yoyt (alz] =y = (alz] =y — V) A ((w = 2)/ = 2= 2)
assume z = & (azl=y—1=(az]=y—1))Az =2

assume afz] Zy—1 J|a[z]#y—1

Fig. 2. An infeasible program path, with transition interpolants. The statement “as-
sume ¢” is a guard. It aborts when ¢ is false. In the transition interpolants, we have
replaced v, with p for clarity, but in fact these formulas are over V U V'

model checking determines that the abstract program IT does have such a feasible
path. This process must terminate, since at each step T is strengthened, and we
cannot strengthen a finite set of propositional formulas infinitely.

The advantage of this approach, relative to that of section 3, is that the
bounded model checking formula A A only relates to a single program path. In
practice, the refutation of a single path using a decision procedure is considerably
less costly than the refutation of all possible paths of a given length.

As an example of using interpolation to compute an approximate program,
Figure 2 shows a small program with one path, which happens to be infeasible.
The method of [7] chooses the predicates x = z, a[z] = y and a[z] = y — 1
to represent the abstract state space. Next to each operation in the path is
shown the transition interpolant T; that was obtained for that operation. Note
that each transition interpolant is implied by the semantics of the corresponding
statement, and that collectively the transition interpolants rule out the program
path (the reader might wish to verify this). Moreover, the transition interpolant
for the first statement, a[z] < y, is * = z = a[z] = y. This is a disjunction and
therefore cannot be inferred by predicate image techniques that use the Cartesian
or Boolean programs approximations. In fact, the BLAST model checker cannot
rule out this program path. However, using transition interpolants, we obtain a
transition relation approximation that proves the program has no feasible path
from beginning to end.

Modeling with Weakest Precondition. A further optimization that we can
use in the case of deterministic programs is that we can express the abstract
transition formulas 7' in terms of the weakest precondition operator. That is,
if T is deterministic, the abstract transition formula T is satisfiability equivalent
over VUV’ to:

(Aver(vy <= ) A -wpr(FaLse) A (A,ep(v) < wpr(p)))

Thus, if we can symbolically compute the weakest precondition operator for the
operations in our programming language, we can use this formula in place of T
as the abstract transition formula. In this way, the abstract transition formula
is localized to just those program variables that are related in some way to
predicates P. In particular, if 7 is an assignment to a program variable not

occurring in P, then we will have vl’, <= p, for every predicate in P.
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Interpolant Strengthening. In preliminary tests of the method, we found
that transition interpolants derived from proofs by the method of [10] were
often unnecessarily weak. For example, we might obtain (p A ¢q) = (p' A¢’) when
the stronger (p = p') A (¢ = ¢') could be proved. This slowed convergence
substanti